
www.manaraa.com

Challenges and Directions in Service Management
Automation

Alexander Keller1

Received: 8 August 2017 / Revised: 25 September 2017 / Accepted: 3 October 2017 /

Published online: 25 October 2017

� Springer Science+Business Media, LLC 2017

Abstract Research teams and IT service providers are continuously increasing the

degree of Automation in Hybrid IT environments spanning multi-provider Clouds as

well as traditional IT. Automation and Cognitive Systems are widely regarded as the

foundation for improving the productivity as well as the quality of Service Delivery.

At the same time, Hybrid IT deployments are being subject to a variety of chal-

lenges in large deployments on a global scale. Based on our experience of running a

service practice that delivers IT Service Management in Hybrid IT environments to

customers worldwide, this paper will review the challenges and directions in

implementing Integrated Network, Systems and Service Management technologies

and point out gaps encountered in current tools and implementations. This is fueled

by the desire of Service Providers to evolve Automation from a development

activity to an approach focusing on recording and storing the practices of the best

system administrators and further on to a cognitive activity where the management

system learns over time which actions need to be undertaken under a given set of

circumstances. By means of real-life examples, we identify candidate concepts and

technologies that will help us build the next generation of Integrated Network,

Systems and Service Management.

Keywords Service Management � ITIL � Best Practices � Automation � Cloud

Computing � Hybrid IT

& Alexander Keller

alexk@us.ibm.com

1 IBM Global Technology Services, 71 South Wacker Drive 7th Floor, Chicago, IL 60606, USA

123

J Netw Syst Manage (2017) 25:884–901

DOI 10.1007/s10922-017-9437-9

http://crossmark.crossref.org/dialog/?doi=10.1007/s10922-017-9437-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10922-017-9437-9&domain=pdf

www.manaraa.com

1 Introduction

The 25 year milestone of Journal of Network and Systems Management (JNSM)

allows us to reflect on the tremendous progress in information technology (IT) in

general and the Internet in particular. Evidently, 25 years ago, IP based protocols

and a good deal of the core services (domain name service, email, file transfer,

news, telnet, whois, management) were commonplace for Academics and

Researchers, but technologies integrating these services in order to provide a

seamless user experience such as Hypertext, search engines and web browsers were

still in their early stages and hence didn’t make for widespread adoption by the

broader public in the early 90s [1].

While the core services and principles of the early Internet still apply today, the

stunning evolution of a vast array of mobile apps has revolutionized the way we

live: Each of us carries one or more smartphones and portable computers with us

that are equipped with a variety of sensors (gyroscopes, GPS sensors, heart rate

sensors etc.). They are always connected, sending data about our status, position,

and even health to back-end transaction processing systems, which—in turn—feed

information back to us. In the example of traffic and telematics applications

depicted in Fig. 1, the GPS and time data from our phone are aggregated in the

back-end systems of Google (Fig. 1a) and Waze (Fig. 1b) [2] to calculate current

speed, exact beginning and end of traffic slowdowns, impact on the travel time and

(a very precisely) estimated time to arrival. In addition, social media-sourced

Fig. 1 Ubiquitous instrumentation example: traffic sensors and arrival time prediction

J Netw Syst Manage (2017) 25:884–901 885

123

www.manaraa.com

information pertaining to the location of root causes (accidents, stopped vehicles,

road hazards, police, speed cameras) as well as hints and tips from other community

members (gas prices) are included in the maps. If alternative paths exist, their

duration is forecasted, and the driver is made aware of a better alternative for

routing its journey.

By doing so, these traffic apps execute the exact same feedback control loop that

our IT Operations and Management systems execute: they (1) monitor speed and

position, (2) analyze and contextualize the data into information, and (3) plan

potential alternatives by forecasting key performance indicators. The (4) execute [2]

step is left to the driver, although it is foreseeable that a self-driving car would be

able to input this information in order to optimize the trip without further human

intervention.

We point out that the highways themselves are virtually unchanged from

25 years ago, and the modest attempts at instrumenting the highway itself by

introducing telematics (often merely a digital panel over the road displaying ’15

Minutes to Junction with highway 190’) are dwarfed by the user experience

introduced by instrumenting each person sitting in a car on that same highway. We

also note in passing that the above applications are available for free, whereas

Network, System and Service Management platforms still run in the hundreds of

thousands of dollars even for a medium-sized corporation. It is hence fair to ask why

we have not seen similar progress in managing our data centers.

In spite of their high cost, Network and Systems Management platforms are built

according to traditional software architecture (usually Java Enterprise Edition).

They still use the Simple Network Management Protocol (SNMP) as their ‘lingua

franca’ when managed resources need to be monitored which do not expose their

instrumentation via APIs. Hence, it is not surprising that some of the open problems

described 25 years ago are still not fully resolved as they usually revolve around

Automation in several key areas: First, the automation of provisioning activities,

and—once the systems have been set up—the automation of service management

processes, such as assessing the impact of a Change Activity. Asset (hardware

devices and software licenses) and Configuration Item (infrastructure elements)

discovery and reconciliation processes are often incomplete and lead to suboptimal

results by leaving the system of record, namely the Configuration Management

DataBase/System (CMDB/CMS) in an inconsistent state, which, in turn, has a ripple

effect on chargeback and billing as well as on measuring Service Level Agreements

(SLAs). This is also often true in Cloud environments, and especially in Hybrid IT

setups that blend Cloud with traditional or virtualized on-premise infrastructure.

The contribution of this paper is to pinpoint several of the aforementioned issues

and suggest improvements, based on our experiences at IBM Global Technology

Services, a leading worldwide Service Provider for both project based delivery

(build management systems and subsequently hand them over to a customer) as well

as strategic outsourcing [3] (build systems, transform the operations and

subsequently run/manage the distributed infrastructure in steady state). The paper

is structured as follows: In Sect. 2, we analyze the inhibitors that made the progress

in Service Management move slower than the swift speed of IT in general. We will

subsequently describe in Sect. 3 several key areas of innovation in Service

886 J Netw Syst Manage (2017) 25:884–901

123

www.manaraa.com

Management that either have or are about to significantly increase the efficiency and

effectiveness of Service Management. We conclude the paper in Sect. 4 and present

areas for further research.

2 Impediments to Service Management Automation

Service Management Automation as a driver for the Industrialization of IT has been

the subject of high hopes and optimistic forecasts: a Gartner report [4] predicted in

early 2014 that ‘by 2017, managed services offerings leveraging autonomics and

cognitive platforms will permanently remove head count to drive a 60% reduction

in the cost of services’. There is no question that today, these percentages are only

attained under very fortunate circumstances (e.g., rigorously enforced homogeneity

of managed resources, special-purpose environments, automated Dev/Test systems),

and are nowhere near a 60% reduction today in typical enterprise environments.

That said, Software Defined Networks allowing the provisioning of networks on-

the-fly, Software Defined Storage solutions performing e.g., the dynamic reclassi-

fication of storage tiers reduce the friction of administering large-scale systems and

have already contributed to increased efficiencies in systems management.

In order to establish a frame of reference for our discussion, Fig. 2 depicts the

major building blocks of a Service Management Automation solution that Service

Providers implement for their clients. This is true for both on-premise installations,

or Cloud and Software-as-a-Service (SaaS) environments. Each building block

represents a major capability of the targeted Service Management environment to be

built.

The top layer Service Management Process Solution building block shows the

process-based bundles of functionality which implement ITIL Best Practices [5].

Fig. 2 Service management solution building blocks

J Netw Syst Manage (2017) 25:884–901 887

123

www.manaraa.com

Each bundle consists of key applications, process implementations, and data model

extensions necessary to enable the Service Management processes. These are:

1. Service Request Fulfilment and Service Request Catalog Management

2. Incident Management (including Major Incident Management)

3. Problem Management

4. Change Management

5. Asset Management

6. Configuration Management

7. Release/Deployment Management

The Service Management Process Solution block relies on the Service Management

Tooling building block, which will provide the infrastructure and toolset required to

perform Service Management processes. The Service Management Tooling building

block is tightly coupled with the (Hybrid) Cloud Automation building block. They

provide the necessary configurations and procedures in the SM tooling to allow

handling of both Cloud and traditional IT services in parallel and preferably using

the same tools and automation frameworks (e.g., CHEF, Salt, Puppet). Although

automation for Cloud and non-Cloud environments is an integrated part of the

Service Management Toolset solution, its implementation is handled in a separate

building block to reduce complexity within the Service Management Tooling

building block itself. The Cloud Automation building block is implemented by

typical Cloud Orchestration tools, such as VMWare vRealize, or through integration

with public Cloud Management APIs from Amazon Web Services, Microsoft

Azure, or IBM Bluemix [6].

Integrations and Bridges is used as a generic block to indicate the various

integrations of the Service Management Toolset building block with external

systems. The key element of this building block will be an Enterprise Services Bus

(ESB): this is the central service integration layer for interfaces between the

different IT Service Management tools. The building block additionally includes:

• Setup and configuration of necessary interface adapters in the Service

Management toolset

• Integration to Network and Systems Management Products and Information

Subsystems that form a part of the Systems Management architecture

• Integration to supporting services such as an LDAP source for authentication of

users or a connection to an email service for email notifications.

Building block User Interfaces, Reports, and Dashboards enables user access to the

Service Management toolset and data. User access to this building block is mainly

for service management roles. The building block also includes access to a standard

set of reports and preconfigured dashboards that are part of the Service Management

environment. In addition, a data warehouse reporting and analytics solution is part

of this building block.

Systems (and Network) Management Products provide the glue between service

management and managed infrastructure by implementing the aforementioned

888 J Netw Syst Manage (2017) 25:884–901

123

www.manaraa.com

monitor and execute steps of the feedback control loop. They are vital to the success

of Service Management Automation.

In the following sections, we will describe the key impediments to the success of

Service Management Automation that we have witnessed in the field.

2.1 Poor or Insufficient ITIL Implementations

The IT Infrastructure Library (ITIL) [5] is the incumbent set of best practices for IT

Service Management. Over the past years, the rigor of the ITIL framework has led

to improved stability of IT Operations and Management; however, it is increasingly

viewed as a key contributor to often month-long change and release cycles, and

hence bears some responsibility for the delayed introduction of key new features

into an IT environment. In contrast, it has long been understood in software

development circles that only an iterative, agile development approach can address

the need for rapid introduction of new features into a distributed software system.

Carrying this concept further into the deployment phase of a software product yields

the concept of DevOps (aka Continuous Delivery), where the development, testing

and operations teams closely collaborate to release software builds into production

in a rapid and incremental fashion. The aforementioned rigidity of the ITIL

framework and its associated processes is often viewed as an impediment to the

need for rapid, iterative changes in a DevOps world. The key contributing factors

are discussed in the following subsections.

2.1.1 Rigor Impeding Flexibility

While ITIL itself only prescribes a specific workflow in very few cases, it is very

specific to the necessary tasks, gates and supporting documentation for each activity

in an IT management process. For example, ITIL Service Transition [5] separates

changes into standard, normal and emergency changes, with the latter two requiring

a Change Approval Board. In environments with major code releases on a weekly

basis, often coupled with daily drops of additional functionality, fulfilling the formal

needs of a normal change is viewed as prohibitive.

IT departments wrongly insisting on strict adherence to a normal change

management process for all possible changes find themselves circumvented by

‘Shadow IT’. This, however, is a deliberate (and erroneous) interpretation by the IT

department, and not an ITIL issue per se: ITIL clearly states that low-risk, recurring

changes are best classified as standard, pre-approved changes. What is happening in

the field, however, is that the change management process is often misused by teams

to manage the demand and hence their workloads by, e.g., insisting on long lead

times [7].

2.1.2 Implementation and Capability Gaps

Until today, some key activities mandated by ITIL are poorly implemented, which

yields to the execution of tasks by humans, thus making them inevitably subjective

as well as prone to delay and errors. A typical example of a key change management

J Netw Syst Manage (2017) 25:884–901 889

123

www.manaraa.com

task with sorely lacking system support is assessing the impact of a change, which

requires up-front determination as to which elements in the software stacks and

ultimately business services could be impacted. The risk assessment is often carried

out by a human, who can only rely to some extent on the data within the CMDB/

CMS, because discovery technologies continue to be a disappointment in terms of:

1. ability to discover fine-grained software artifacts,

2. supporting the most current versions of a constantly changing middleware,

RDBMS and infrastructure component landscape, such as load balancers or

appliances,

3. poor scalability of the system, which often leads to scans being performed only

once a week, with most discoveries being limited to scanning merely IP address

ranges without credentials.

There is broad agreement that this traditional process of filling the CMDB with data

(scan ? reconcile ? transform ? promote) spanning multiple tools is inherently

broken. Section 3.4 will discuss approaches for mitigating these shortcomings.

Another example for an often-encountered capability gap is the integration of

server patching with change management. The development of automated

integrations between these disparate systems is usually left to a company’s IT

organization, or to a service provider. While the latter has usually the economies of

scale to build and subsequently amortize the cost of building these integrations by

means of frequent reuse, a company merely purchasing these systems will most

likely not spend the additional money in integrating them.

2.1.3 Ticket-Driven Versus Outcome-Driven

Inflexible forms for reporting issues and requesting help as well as hard-to-navigate

Voice Response Units (VRU) have led to considerable frustration with Service

Desks among end users. Integrated chat capabilities were viewed as a good middle-

ground when they were introduced a few years ago; however, their limited

scalability due to a declining number of human operators makes this option

increasingly unattractive. Please refer to Sect. 3.2 for a discussion on how to

improve the effectiveness of the chat interface.

The quality of community-provided content in a self-help model varies, and

service management tools aren’t always good at content management, especially

when it comes to rich media. This is at least partially due to the fact that few

enterprises are willing to incur costs for manually keeping a knowledge

management system comprising curated articles and how-to documents up-to-date,

especially when equally good content for common-off-the-shelf products can be

found for free on the Internet.

In the current state of the art, the concept of a ticket is forced upon a user

submitting an incident or service request, and ticket closure rate targets often yield

to suboptimal quality (ticket closed ? problem solved). Customer satisfaction

follow-up by means of emails contributes to a very low return rate of feedback, and

usually captures negative responses.

890 J Netw Syst Manage (2017) 25:884–901

123

www.manaraa.com

2.2 Legacy Architectures Impeding Continuous Delivery

Initial enthusiasm for Continuous Delivery/DevOps technologies suggested that

traditional Change and Release Management will become history as it will be

possible to deploy a new version of an application directly in a small, limited part of

the production environment versus moving through the traditional waterfall

development pipeline DEV ? UT ? SIT ? UAT ? PROD (Development, Unit

Test, System Integration Test, User Acceptance Test, Production). The time and

cost savings are substantial, and the management of these infrastructures becomes

less cumbersome by avoiding a lot of ‘red tape’. However, so far we don’t see the

ability to fully take advantage of the DevOps paradigm in many production

environments. The following picture attempts to characterize the key differences

between the typical DevOps architectures from companies ‘born on the Cloud’

versus the traditional JEE architecture on which typically hundreds of our

customers’ applications run (Fig. 3).

Simply stated, a DevOps-ready application is built on massively parallel scale-

out architectures, usually leveraging a (proprietary) map/reduce environment (such

as Hadoop, Spark, Cassandra, Hive or the like). First, this means that every node is

running a copy of the application, however, they can be on different version levels

as there are no interdependencies. Second, the application logic is completely

decoupled from the database schema; in fact, since we are mostly dealing with

NoSQL data stores based on name/value pairs (with loose consistency between

Fig. 3 DevOps-ready application architecture versus legacy JEE application architecture

J Netw Syst Manage (2017) 25:884–901 891

123

www.manaraa.com

three replicas vs. ACID in traditional relational database management systems),

there is no database schema at all! These two factors make that the overall

architecture is resilient to changes in the application in this massive parallel system.

In contrast, today’s enterprises still run their applications in a JEE environment,

potentially with the help of DevOps deployment tools such as Jenkins, Urbancode

Deploy and the like. However, there is no way of deploying a new version of an

application e.g., on a single node in a JEE application server cluster while leaving

the other nodes run the prior version, let alone without any changes to the

underlying database schema (which, in turn can only be either updated for all DB

schema copies, or none). As a third differentiator, many enterprises keep

emphasizing that they run mission critical applications and are absolutely dependent

on transactional integrity. Hence, failure—even of a single node—is not an option

for the foreseeable future, and neither is the demise of Change and Release

Management. On the flip side, there is hardly a new software migration or re-design

project that does not explicitly address the deployment aspects. It is hence fair to say

that, over time, the amount of DevOps-ready systems will substantially increase.

2.3 Regulated Industries

As mentioned so far, the typical ITIL use case in enterprise IT management, which

drove the creation of integrated service management platforms, consists in

accurately representing the managed environment as well as keeping a log of all

incidents, problems and changes that have been opened/performed against systems

within this environment.

Many service providers have added the need for the above to function seamlessly

in a multi-customer environment so that an employee can work across accounts

while preventing individual accounts from seeing the data of other accounts. While

a fine-grained security model based on role based access control (RBAC) allows the

separation of data, contemporary service management platforms have not achieved

full multi-tenancy yet.

Regulated Environments—especially in the healthcare, financial and energy

sectors—bring additional challenges due to them being subject to very severe audit

and compliance requirements as mandated by laws such as the United States Health

Insurance Portability and Accountability Act (HIPAA) or standards such as

Payment Card Industry Data Security Standard (PCI DSS): the ability of the system

to withstand any tampering of logs and audit trails, and the ability to establish non-

repudiation of change management approvals and a permanent audit trail of any

actions being carried out on the system (both runtime and configuration). While no

prevalent solution exists yet, it is conceivable that we will see Blockchain based

implementations that address the non-repudiation needs of heavily regulated

industries.

2.4 The Elusive Partner Ecosystem

There is no shortage of platforms and frameworks in the Service Management and

Automation space. In large companies, a steady flow of acquisitions and business

892 J Netw Syst Manage (2017) 25:884–901

123

www.manaraa.com

partnerships yields demand for properly integrating a new tool into the already

existing ecosystem. This, however, means providing the content for these platforms,

such as discovery probes or automation packages for a vast variety of managed

resources—and a large variety of versions. However, looking at the history of

systems in the space leaves the impression that the buildout of content has been at

best a mixed success. There are two reasons for this:

1. Many service management systems share a lack of development budget being

allocated to equip the tools with a critical amount of content for the

management modules right out of the box. They typically ship with demo

code to showcase how this content could be developed, but not a complete suite

of modules that would support the most common managed resource types.

2. In addition, the hope of an emerging ecosystem of business partners and open

source contributors to build content for all sorts of managed resources often

does not materialize, which leaves many tools stranded with a limited footprint,

and at risk of being marginalized and ultimately discarded.

An additional burden placed upon these systems is the limited timespan that large

software vendors allow for these products to succeed in the marketplace (typically

around 2 years); if the commercial success does not happen within this time frame,

a product is either withdrawn or blended with another product. This, in turn, leaves

the content creators in the situation that similar functionality is being implemented

over and over again on ever-changing platforms.

3 Progressing Service Management Automation

This section provides directions on how to advance the agenda for Service

Management Automation. It is clear from the foregoing discussion that the way how

Service Management is implemented today needs to change so that the efficiency of

ITIL can be improved while maintaining its effectiveness. This is needed because

mere labor arbitrage (aka ‘offshoring’ or ‘out-tasking’) and financial engineering

have run their course and will not yield further savings.

On the other hand, the author has witnessed how naive attempts to ‘remove ITIL’

in pre-sales situations for Hybrid IT (and even pure Clouds) led to quite unpleasant

customer reactions, especially in financial or regulated environments. For example,

one needs to be careful not to confuse provisioning with change management:

Simply ordering a new virtual server versus patching an existing one (and hence

avoiding the dreaded change management process) is not an acceptable practice in

production environments because most software architectures in use today do not

allow this to occur easily (see Sect. 2.2). In addition, the lifecycle of a server begins

with the initial order: adding another node to a cluster, stopping/rebooting systems

and performing typical lifecycle management operations tend to have an impact on

the stability of the overall distributed environment and will require change

management.

J Netw Syst Manage (2017) 25:884–901 893

123

www.manaraa.com

In the next few sections, we will offer a set of suggestions that we believe will

lead to a significant improvement in the Quality of Service Management.

3.1 Event Management: Log Analysis and Machine Learning

We start our discussion with the area of Event Management, which traditionally has

been the most advanced in terms of automation, due to—in part—the forced

uniformity of the event messages, and the availability of classification and policies,

specified as Event-Condition-Action rules. In addition, early successes in pattern

detection [8] and event correlation [9] have proven that control-theoretic and

machine learning approaches can be successfully applied to Event Management.

Log Analysis systems such as Splunk are a contemporary extension of these

concepts.

For the same reasons, Automation systems can be deployed in a very effective

manner in this area: by focusing on automating the troubleshooting of the most

frequent events (whereas ‘filesystem[80% full’ is on spot #1), we have seen the

reduction of critical issues in server operations by more than 89% along with a

decrease of server downtime by more than 50%. The is due to the fact that by

automating not only severity 1 tickets, one can catch and remediate misconfigu-

rations of a server at an early stage, long before it becomes a severity 1 issue.

We note that a good practice for maintaining tracebility is to automatically cut an

Incident (and potentially a change) ticket whenever Automation performs changes

on a managed system. In addition, the generated business value needs to be

surfaced: Just because the remediation appeared ‘effortless’ due to Automation, it

still delivered business value and thus should be reported and eventually billed.

3.2 Incident Management: Cognitive Systems, ChatOps

As discussed in Sect. 2.1.3, one of the key issues in Incident Management is the lack

of scalability of the submission mechanism and the difficulties of engaging an end

user in a conversation or a chat while extracting the necessary information required

to submit an incident, instead of presenting the user with a mere ‘ticket form’. This

is a great opportunity for applying Cognitive Systems such as IBM Watson to

Service Desk tasks such as Incident Management.

Studies have shown that the ability for a cognitive system to detect the mood of a

submitter is key to guide the conversation, regardless of whether it is happening via

phone or text/chat messages: ‘The best UI is No UI’ sums up the approach quite

nicely. This is an opportunity for deploying cognitive technologies/chat bots with

voice-to-text gateways, if needed.

An example of such a conversation is depicted in Fig. 4, where a cognitive

system is used as a front-end to a traditional service desk. We obviously still need a

data store provided by a ticketing system and a CMDB in order to determine the

context for guiding the responses of the cognitive system.

The promise of a cognitive approach lies in ‘programming’ the system by feeding

it a (very) large amount of data versus implementing a rule based system; since

service management platforms collect a massive amount of ticket data, the

894 J Netw Syst Manage (2017) 25:884–901

123

www.manaraa.com

prerequisites for training the system are met. In practice, we find that these systems

do not train themselves and need, especially early in the learning cycle, information

architects to monitor responses and train the environment.

We note that our backend service desks still cut a ticket for each request, and

keep track of it via a reference number. It is just that the system doesn’t expose the

complexities and rigidity of ‘the engine’ anymore that performs the work on behalf

of a user.

A variation of this concept is known as ‘ChatOps’, where a cognitive system

listens in on group chats or ‘channels’ as offered by e.g., Slack, and picks up

information (‘several users of server x are experiencing poor performance’) to

generate incidents for subsequent automated troubleshooting.

3.3 Service Request and Service Catalog Management

If we extend the above concept of filling out forms through a conversational

approach, we increase the domain of use cases to the content of a Service Catalog in

a straightforward way. This means that a user may be able to submit a server reboot

request (or even placing an order for a new server) verbally or through text

messages. This, in turn, requires that enterprises buy into modern concepts of

distributed systems such as resource pools, dynamic workload scheduling, auto-

scaling and sharing of software licenses versus ‘bring your own license key’. The

foregoing list is close enough to the definition of a Cloud by NIST [10]:

1. On-demand: Self-Service

2. Elastic: scale up/down dynamically

3. Shared: pooled resources

Fig. 4 Using cognitive systems as front-ends for Incident Management

J Netw Syst Manage (2017) 25:884–901 895

123

www.manaraa.com

4. Metered usage: fine level of granularity

5. Accessible via network

It also highlights the fact that a service request catalog as depicted in Fig. 5 is more

than a mere assembly of orderable services: If done right, the catalog offers the full

spectrum of server and software lifecycle management, from initial provisioning to

configuration changes and ultimately decommissioning, while presenting only the

systems that are in scope of a specific operation and user, e.g., by segregating

systems according to business units, and by greying out menu options depending on

their feasibility (a stopped server can only be started, and hence a ‘stop server’

operation in the selection menu is greyed out). The context menus of the service

request catalog are driven by data from the CMDB/CMS. Furthermore, a

Fig. 5 Service catalog in the ServiceNow platform (extract)

896 J Netw Syst Manage (2017) 25:884–901

123

www.manaraa.com

sufficiently rich service request catalog that covers the entire lifecycle of a large set

of operating systems and software stacks essentially represents the equivalent of a

‘Data Center API’ that can be triggered not only by a user through the Service Desk,

but also through the API by event management systems to, e.g., initiate autoscaling

or kick off remediating actions to address an incident.

The reader will observe that Fig. 5 contains ‘atomic’ lifecycle management

operations, and does not necessarily provide Service Requests that would

correspond to an OpenStack HEAT pattern, such as ‘deploy a 3-tiered JEE

application with a 3-node web application server cluster along with a highly

available database cluster’. The reason is that we found that a simple server

request for a mere operating system and multiple storage volumes and (virtual)

network interface cards usually contains around 200 parameters. A service request

for server with a middleware stack easily tops 400 parameters. Obviously, in order

for this to work well, the amount of parameters that a user needs to supply must

remain fairly small: Seven parameters are typically considered the acceptable max-

imum by interaction designers because studies have shown that the number of

distinct items that a human being can remember concurrently is seven. We found

that setting default values in ‘Ticket Templates’, generating hostnames, assigning

IPs from predefined pools and deriving values via CMDB look-ups brings a

typical set of 200 order parameters per server down to the following ten

mandatory inputs: Business Unit, Securityzone, Environment, OS Version,

purpose of request, storage tier, first data disk size, #CPU, #RAM, Business

Application Name. Combining the latter 2 (or even 3) parameters into a T-shirt

size, gets us within the realm of administrators submitting server builds without

complicated interactions on a screen, and potentially via a voice interface that is

running on a cognitive system!

While most of these parameters can be defaulted, it would be too cumbersome to

list all parameters for an OpenStack HEAT pattern comprising a multitude of

servers on the GUI of a Service Management Platform.

We rely instead on a Cloud Broker to allow a user to graphically depict the

topology of a distributed system, allow the designation of Development/Test/

Production environments, and collect the overall approvals. The Cloud Broker

would then create the bill of materials, suggest the most cost-effective service

provider, and request each software stack from the service request catalog of the

service provider to execute the provisioning actions. Powerful data federation

mechanisms from a Cloud Broker to the various service catalogs is needed in order

to decouple the Cloud Broker from the actual service request catalogs, in case any

changes are made. Keeping the bill of materials in the Cloud Broker enables this

system to perform billing as well as chargeback/showback tasks, assuming that it

interrogates the authoritative data store. We discuss the approaches for improving

the accuracy of the CMDB/CMS in the next section.

3.4 Configuration Management: From Discovery to CMDBs

The aforementioned ITIL best practices demonstrate that managing Hybrid Clouds

is a data-intensive endeavor, and the CMDB/CMS is the place where Service

J Netw Syst Manage (2017) 25:884–901 897

123

www.manaraa.com

Management platforms store this information in order to become the ‘context

engine’ that ties together users, organizations, cost information, software licenses

with managed objects such as clusters, server pools, VLANs, NICs, IP addresses or

disks.

The great diversity of the aforementioned managed resources implies that the

Management Information Model must be rich. It must have managed objects with

properties, typed relationships and the ability to navigate them efficiently. While

progressive authors call such an object-oriented data store a ‘graph database’, the

concept of a Common Information Model has been around for 15 years [11].

The question remains what is different now compared to the prior state of the art?

The way how CIs are created has changed so that we do not rely on discoveries

anymore!

In particular, the major measures to addressing the capability gaps identified in

Sect. 2.1.2 are:

• we federate data that relates to users, locations or organizations (from LDAP

servers),

• pre-board cost centers, and

• rely on Cloud platforms for placement of VMs into VLANs and the selection of

IP addresses.

All of this information is gradually filled in during the provisioning process and the

service request ticket evolves into a build sheet as provisioning progresses. Upon

success of the provisioning process, we automatically generate(!) the Authorized

CIs in the CMDB/CMS from the ticket data. There are about 15-20 CIs per Server

with OS installed and about 30-35 for a Server with Middleware/Database.

As a consequence, discovery technologies such as Chef Ohai [12] may come into

play as a secondary control, namely in order to perform automated CI audits. Every

once in a while, a discovery scan of the environment is performed in order to

identify discrepancies between the authorized (‘what it should be’) and the actual

(‘what it really is’) state of the CIs. Every discrepancy (more CPU, RAM or disk

space than initially ordered) may be a hint that unauthorized changes are being

done, and hence trigger an incident for subsequent reconciliation and—eventually—

investigation. We found that analyzing the incidents also yields valuable informa-

tion on finding errors within the automation itself, or with the integrity of the data

that was used for establishing the networks, VLANs and security zones within the

environment.

The key insight here is that the aforementioned allow to drastically cut down the

time it takes to obtain current CI information, and hence circumventing the long-

winded and inevitably incomplete discovery procedure. The very same mechanism

works fine for all subsequent lifecycle management operations (modify system

parameters), including decommissioning. The latter is done by merely archiving the

CIs so that billing can be done based on actual time used, even if the server has been

decommissioned prior to the billing report.

898 J Netw Syst Manage (2017) 25:884–901

123

www.manaraa.com

3.5 Change Management: Leverage Standard, Pre-approved Changes

Once a service request has been submitted through the catalog, its execution will in

most cases require a change, especially in a production environment. We can cut

down the complexity of change management substantially by reminding ourselves

that ITIL has long ago introduced the concept of standard, pre-approved changes

which—by definition—do not require Change Advisory Board (CAB) approvals.

These are changes whose implementation carries no or only very minor risks, and

whose execution is predictable, especially if done through automation. We can

therefore classify the typical set of canonical lifecycle operations into 3 categories:

1. Standard, pre-approved changes.

2. Normal changes, potentially requiring a CAB.

3. Changes that are rare or require expert knowledge, and which should probably

not be in a service catalog at all, but should rather be done as a separate,

dedicated project.

When it comes to classifying changes into the above 3 categories, we have

witnessed that the opinions of our clients differ greatly. While some are more

‘lenient’ with respect to checks and approvals, others lack trust on whether a

distributed resource scheduler will place a VM onto a server with enough remaining

capacity and whether the system is able to determine the right amount of thin

storage provisioning without running out of disk space. Thus, they demand a normal

change even for provisioning tasks.

We fully agree with Forrester [7] that the goal has to be to ‘lower the center of

gravity’ by allowing a large portion of standard, pre-approved changes. We also

expect emerging software architectures based on Spark/Hadoop for scale-out

systems (cf. Sect. 2.2) to gradually eliminate the single points of failure that until

now require human impact analysis and sign-off on changes that could negatively

affect critical parts of the infrastructure.

3.6 From Reporting to Analytics

We end our discussion with the Reporting and Dashboard Building Block,

introduced at the beginning of Sect. 2. At the core of Service Management

Reporting lies Service Level Management, which ties the key performance

indicators of a service provider to dollars. Our Research work, initially described

in the present journal 14 years ago [13] has matured over time into a solution that

IBM uses on commercial accounts for measuring SLA attainment. Figure 6

illustrates a sample dashboard that is built on the common-off-the-shelf Business

Intelligence tool IBM Watson Analytics, and which is fed by the SLA engine that

was first described in [13].

Figure 6 depicts SLA attainment for a total of 9 months of data (left upper

corner) for an account that uses our Service Catalog described in Sect. 3.3, and

whose usage of service request types is depicted in the pie chart in the lower left

corner. The dashboards are dynamic in the way that the individual performance of a

J Netw Syst Manage (2017) 25:884–901 899

123

www.manaraa.com

given service offering can be measured, as well as the different tasks in the delivery

processes. Since each task has an owner (potentially a different service provider as

we are dealing in a multi-sourcing context), we are then able to establish a rating of

the different providers and teams that contribute to the delivery of a service.

Additional comparisons by geography and business unit are doable as well, given

that slightly different delivery processes are in place.

4 Conclusions and Outlook

In this paper, we have described the key challenges and achievements of Network,

Systems and Service Management that we have witnessed over the past 25 years.

The Journal of Network and Systems Management has been the forum where a good

deal of the innovation of our cherished discipline has been described. While we are

pretty sure that self-driving cars will have become a reality 25 years from now, in

2042, it remains to be seen if the Automation of Service Management tasks will

proceed at an equally brisk pace, and if Service Management as an industry will

exist in 25 years at all, and in which shape.

There is a case to be made that continuous standardization on open source

technologies coupled with cognitive systems and Cloud automation tools will make

that Service Management will disappear as a distinct technology and ‘weave itself

into the fabric of everyday life’ [14] in order to become a ‘most profound

technology’.

Fig. 6 Service level agreement dashboard (sample)

900 J Netw Syst Manage (2017) 25:884–901

123

www.manaraa.com

The authors and readers of the Journal of Network and Systems Management will

play a major role in shaping the future of this important discipline.

References

1. Krol, E.: The Whole Internet, 1st edn. O’Reilly & Associates Inc., Sebastopol (1992)

2. Waze: Get the best route, every day, with real-time help from other drivers. https://www.waze.com.

Accessed July 2017

3. Baker & McKenzie’s Global Sourcing Practice Group: Introduction to Outsourcing. Baker &

McKenzie (2008)

4. Karamouzis, F., Da Rold, C.: Predicts 2014: Business and IT Services Are Facing the End of

Outsourcing as We Know It. Gartner Inc, Stamford (2014)

5. Axelos: ITIL Service Transition. AXELOS, London (2011)

6. Amazon: Amazon web services cloud products. https://aws.amazon.com/products/ (2017)

7. Betz, C.: Change Management: Let’s get back to Basics. Forrester Research, Cambridge (2017)

8. Ma, S., Hellerstein, J.: Mining partially periodic event patterns with unknown periods. In: Pro-

ceedings of the 17th International Conference on Data Engineering, Washington, DC (2001)

9. Jakobson, G., Weissman, M.: Real-time telecommunication network management: extending event

correlation with temporal constraints. In: Integrated Network Management IV: Proceedings of the

fourth international Conference on Integrated Network Management, Toulouse, France (1995)

10. Mell, P., Grance, T.: The NIST Definition of Cloud Computing. National Institute of Standards and

Technology, Gaithersburg (2011)

11. Distributed Management Task Force: Common Information Model http://www.dmtf.org/standards/

cim (2017)

12. CHEF Ohai: About Ohai. https://docs.chef.io/ohai.html. Accessed July 2017

13. Keller, A., Ludwig, H.: The WSLA framework: specifying and monitoring service level agreements

for web services. J. Netw. Syst. Manag. 11(1), 57–82 (2003)

14. Weiser, M.: The computer for the 21st century. Sci. Am. 265(3), 94–104 (1991)

Alexander Keller is an IBM Distinguished Engineer and Director, Integrated Service Management with

IBM Global Technology Services in Chicago, IL, USA. In this role, he is responsible for setting the

technical strategy on a global level and works with many customers on complex Cloud and IT Service

Management implementation projects. Alexander’s core areas of expertise are large-scale Discovery

systems, Service Desks, Change and Configuration Management implementations, and Cloud Computing.

Prior to joining IBM’s Global Services organization in 2007, he managed the Service Delivery

Technologies department at the IBM T.J. Watson Research Center in Yorktown Heights, NY. He received

his M.Sc. and Ph.D. degrees in Computer Science from Technische Universität München, Germany, in

1994 and 1998, respectively and has published more than 60 refereed papers in the area of distributed

systems and IT service management.

J Netw Syst Manage (2017) 25:884–901 901

123

https://www.waze.com
https://aws.amazon.com/products/
http://www.dmtf.org/standards/cim
http://www.dmtf.org/standards/cim
https://docs.chef.io/ohai.html

www.manaraa.com

Reproduced with permission of copyright owner.
Further reproduction prohibited without permission.

	Challenges and Directions in Service Management Automation
	Abstract
	Introduction
	Impediments to Service Management Automation
	Poor or Insufficient ITIL Implementations
	Rigor Impeding Flexibility
	Implementation and Capability Gaps
	Ticket-Driven Versus Outcome-Driven

	Legacy Architectures Impeding Continuous Delivery
	Regulated Industries
	The Elusive Partner Ecosystem

	Progressing Service Management Automation
	Event Management: Log Analysis and Machine Learning
	Incident Management: Cognitive Systems, ChatOps
	Service Request and Service Catalog Management
	Configuration Management: From Discovery to CMDBs
	Change Management: Leverage Standard, Pre-approved Changes
	From Reporting to Analytics

	Conclusions and Outlook
	References

